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Abstract
Household smart meters that measure power consumption

in real-time at fine granularities are the foundation of a future
smart electricity grid. However, the widespread deployment
of smart meters has serious privacy implications since they
inadvertently leak detailed information about household ac-
tivities. In this paper, we show that even without a priori
knowledge of household activities or prior training, it is pos-
sible to extract complex usage patterns from smart meter data
using off-the-shelf statistical methods. Our analysis uses two
months of data from three homes, which we instrumented to
log aggregate household power consumption every second.
With the data from our small-scale deployment, we demon-
strate the potential for power consumption patterns to reveal
a range of information, such as how many people are in the
home, sleeping routines, eating routines, etc. We then sketch
out the design of a privacy-enhancing smart meter architec-
ture that allows an electric utility to achieve its net metering
goals without compromising the privacy of its customers.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-

neous; K.4.1 [Computers and Society]: Public Policy Is-
sues—Privacy; K.6.2 [Management of Computing and
Information Systems]: Installation Management—Perfor-
mance and usage measurement

General Terms
Design, Standardization, Measurement, Security

Keywords
Smart Meters, Smart Grid, Privacy, Security

1 Introduction
Recently, there has been an increasing focus on “green-

ing the home” using a combination of fine-grained power
consumption monitoring, smart appliances, and renewable
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energy sources, e.g., rooftop solar panels. The trends have
led to the design of smart electric grids that provide sup-
port for various technologies, including net metering, de-
mand response, distributed generation, and microgrids [15].
An important component of a future smart grid is the instal-
lation of smart (or net) meters in homes that support both
dynamic pricing and a two-way flow of electricity between
homes (or microgrids) and the larger grid. As these meters
become more sophisticated, they are able to measure house-
hold power consumption at ever finer time-scales. Initial de-
ployments of the Advanced Metering Infrastructure (AMI)
in Ontario, Canada support meter readings at 5 to 60 minute
intervals [4]. The next generation of smart meters will re-
duce these time intervals to one minute or less. For instance,
in July 2010, PECO, one of the largest providers of electric-
ity and gas in the U.S., selected Sensus to provide an AMI
with meters that support one minute intervals [24].

In this paper, we argue that the widespread deployment of
smart meters has serious privacy implications since they in-
advertently leak detailed information about household activ-
ities. The information leaks directly correlate with the time
granularity that a meter measures power consumption. Un-
like traditional dumb meters that record aggregate monthly
usage for a utility, today’s smart meters allow an utility, or a
malicious party, to glean detailed information about house-
hold activity in real-time from fine-grained usage measure-
ments. Further, research on nonintrusive load monitoring
(NILM) has shown that it is possible to disambiguate indi-
vidual appliance usage from an aggregate smart meter power
trace by using prior knowledge of an appliance’s power sig-
nature [17]. Such techniques reduce or eliminate the need
for outlet- or appliance-level meters, since they are able to
extract detailed usage information for individual appliances
from an aggregate household power trace.

We show that even without detailed knowledge of appli-
ance signatures a priori or prior training, it is possible to
extract complex usage patterns from smart meter data using
off-the-shelf statistical methods. Our methods are able to la-
bel specific types of activity in the home over time based on a
number of characteristics, including the level of power con-
sumption, its intermittency, and its duration. In a Facebook-
world where users willingly share invasive details of their
private lives with friends and strangers, the ability to extract
this information may not appear to be an egregious violation
of privacy. However, with our limited data, we argue that



Table 1. Private questions and answers that fine-grained power consumption data reveals.
Question Pattern Granularity

Were you home during your sick leave? Yes: Power activities during the day Hour/Minute
No: Low power usage during the day

Did you get a good night’s sleep? Yes: No power events overnight for at least 6 hours Hour/Minute
No: Random power events overnight

Did you watch the game last night? Yes: Appliance activity matching TV program Minute/Second
No: No power event in accordance with game showtime

Did you leave late for work? Yes: Last power event time later than Google maps estimated travel time Minute
No: Last power event time leaves enough time for commute

Did you leave your child home alone? Yes: Single person activity pattern Minute/Second
No: Simultaneous power events in distinct areas of the house

Do you eat hot or cold breakfast? Hot: Burst of power events in the morning (microwave/coffee machine/toaster) Second
Cold: No power event matching hot breakfast appliances

it is possible to infer detailed information about household
activity—questions such as how many people are in a home
at a given time and whether a resident went out for dinner on
a particular evening, for example. Entities that gather large
amounts of data would potentially be able to predict even
more detailed facts, such as residents’ genders and ages.

Such information is a foundation for building power-
ful analytic tools for predicting behavior that could poten-
tially be misused by companies or even criminals. To mit-
igate these problems, we sketch out a design for a privacy-
preserving smart meter architecture that enables an electric
utility to achieve its net metering goals, while respecting the
privacy of its consumers. The approach leverages the no-
tion of Zero-Knowledge proofs and provides cryptographic
guarantees for the integrity, authenticity, and correctness of
payments, while allowing variable pricing without revealing
the power measurements gathered during a billing period. In
Section 2, we describe our infrastructure for gathering power
traces in homes and outline simple data mining techniques to
identify and label types of household activities. Residents of
each home kept power journals for a few days during the
sampling period to corroborate our measurements. Next,
in Section 3, we describe a secure multi-party computation
protocol that uses neighborhood gateways to preserve each
home’s privacy while enabling net metering.

2 Privacy Concerns with Smart Meters
Recent work by Quinn [23] provides an overview of

the privacy implications of fine-grained power consumption
monitoring. While Quinn does not present specific tech-
niques or conduct a detailed data analysis, he posits that
those with access to smart meter data will be able to infer an-
swers to many questions about a household’s personal, and
potentially private, activity. While the answers to some of
these questions may seem innocuous, e.g., when do people
watch TV, others are quite disturbing, e.g., is there a newborn
in the house. Table 1 highlights a few of these private ques-
tions, along with the power consumption pattern that may
reveal their answer. The table also lists the monitoring granu-
larity we believe a smart meter requires to accurately identify
the necessary pattern. For instance, a relatively low level of
power consumption and variation may indicate that no one is
home, while power activity every few hours throughout ev-
ery night may indicate regular nighttime feedings for a new-
born. Even answers to seemingly innocuous questions may
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Figure 1. Our architecture using TED monitors/gateways
and SheevaPlug computers.

prove valuable to third-parties, e.g. for adjusting insurance
rates, targeting advertising campaigns, resolving legal dis-
putes, or conducting criminal investigations.

We demonstrate that revealing these complex usage pat-
terns is not difficult by developing a simple approach that
opaquely labels different types of household activity. The ap-
proach leverages simple off-the-shelf clustering and pattern
recognition techniques on 2 months of power consumption
data from 3 homes. To gather the data, we instrumented each
home’s main circuit breaker with a TED energy monitor [1]
that logs household power consumption every second. Fig-
ure 1 graphically depicts the architecture. The TED monitor
uses the home’s power circuits to transmit power readings to
a TED gateway that makes them available via a built-in web
browser. We then use an embedded SheevaPlug computer
in each home to download the second-level data each hour
from the TED gateway and transmit it to a central reposi-
tory for analysis. Each entry in the TED data log consists
of a power tuple (t, p) that includes a timestamp t and the
average power consumption p in kilowatts over the previous
second. The one-second logging granularity is smaller than
that of existing smart meters [20], which allows us to identify
many patterns that are not possible with current meters.

We distill our analysis into 4 steps: 1) pre-process power
traces using an off-the-shelf clustering algorithm to identify
and label similar types of power events, 2) tag each power
event with one or more defining characteristics, 3) filter out
automated appliances by observing their signatures during
periods of low power activity, and 4) map opaque labels to
real-life events using a small amount of externally gathered
knowledge.
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Figure 2. Example day-long second-level power trace
with labels from the day’s activity log.

Label Power Events. We first pre-process each power trace
using a density-based clustering algorithm (DBSCAN [7] as
implemented by WEKA [11]) to group together power tuples
into power segments. A power segment is simply a collection
of tuples with a particular pattern of power consumption val-
ues that are adjacent in time. Power segments often have
a constant power consumption over a given time period, al-
though this is not required. In some cases, we identify events
of the same shape, such as a steep ramp-up and then level-
ing off. The algorithm labels the power segments such that
segments with a similar pattern receive the same label. In
many of our figures, we distinguish these labels using differ-
ent colors. We chose DBSCAN because of its simplicity and
our prior familiarity with it, and have not compared it against
similar, and potentially more sophisticated, algorithms, such
as CLIQUE [2], MAFIA [9], DENCLUE [12]. However, we
have found that even our simple approach is able to detect
household activities with high accuracy.
Tag Power Events. We append to each power segment
a few distinguishing attributes. The primary attributes are
each power segment’s duration and its power step, i.e, the
power increase or decrease at the beginning of the segment.
We also label power segments with a particular shape if the
power level was not constant. In this case, we identify and
label non-constant shapes manually, although it is possible
to automate the process. The result is a 6-tuple that in-
cludes the segment’s label, start time, average power, du-
ration, beginning power step, and shape label. We are able
to automatically process these 6-tuples to answer different
types of queries on the data. For example, we identify repet-
itive usage patterns by filtering for power segments with the
same duration, beginning power step, and shape. Figure 2
shows power segments (appended with labels from our ac-
tivity logs) in a typical day for one of the homes. In this
figure, a high variation in color corresponds to human activ-
ity, e.g., periods between 8:00 AM - 9:30 AM and 6:30 PM -
midnight. Using the intuitive observation that relatively high
power consumption and variation indicates human activity,
Figure 3 reveals when people were in one of the homes over
the course of a month with weekends highlighted.
Filter Automated Appliances. Figure 2 also demonstrates
that while nearly all human-triggered power events corre-
spond to the beginning of a power segment, there are many
segments that do not correspond to any human interaction.
To obtain only power segments associated with human ac-
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Figure 3. Identification of human presence with high
probability for each day of the month.
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Figure 4. Low power periods correspond to little human
activity over our two-month trace for one home.

tivity, we filter out the power signatures of automated appli-
ances, such as refrigerators, heating or air conditioning. We
leverage the intuitive observation that periods of low power
activity correlate well with periods of little human activity to
isolate signatures. We illustrate the point in Figure 4, which
identifies periods of low activity in a home over our 60-day
trace. Likewise, periods of high activity correlate with more
people being inside the home, i.e., for a get-together or party.
Figure 5 shows power signatures for appliances during an ab-
sence from the home. In this case, the signatures correspond
to a dehumidifier that runs for 2 hours every 4 hours, and an
air re-circulator that runs for 20 minutes every hour.
Map Events to Real Life. After collecting and analyzing
a sufficient amount of data, it is possible to identify pat-
terns of recurring clusters according to their characteristics.
Powerful data mining techniques could be applied to the ob-
tained power segments. For example, the grouped power
segments shown in Figure 5 could be filtered out automat-
ically by entering them in a clustering algorithm, this time
in supervised mode. Alternatively, tagged power segments
could also be classified and matched to future occurrences.
Further, pattern matching can be improved and past instances
can be re-analyzed when new appliances are disambiguated.
To illustrate this, Figure 6 shows in detail the disambigua-
tion of power segments (identified by different colors). In
this case, clustering distinguishes opaque events but not spe-
cific appliances or activities. An entity that had access to
large amounts of data could then classify these events based
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Figure 5. Power signatures for a dehumidifier and an air
re-circulator. Note that the dehumidifier shuts off after it
fills up.
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Figure 6. Power segments from eating breakfast. The
clustering algorithm automatically generates the color
scheme. The labels are from our activity logs.

on prior knowledge. In our case, we substituted knowledge
from activity journals. Each home manually kept detailed
power activity journals for at least 3 days over the 60 day
period to provide some knowledge of activities in the home.
These journals were as accurate as possible, and recorded
rough timestamps for turning on and off every light switch
and appliance throughout the day. Using the data from our
activity journals, we map the opaque power segments to spe-
cific types of real-life events. The segments in Figure 6 that
were identified by the clustering algorithm have been marked
with arrows corresponding to activities logged by the indi-
viduals living in the home. The clustering algorithm finds
power segments for the stove, coffee maker, toaster and two
computer screens, which is enough to answer the question
in Table 1 about whether a person had a hot or cold break-
fast that morning. Note that the algorithm is able to delimit
these segments despite the simultaneous operation of other
appliances. To demonstrate the importance of the logging
granularity, Figure 7 shows the same trace as Figure 6, but
with a 30-second logging granularity. In this case, the pattern
reveals little about the usage of each separate component.
Summary. Our analysis demonstrates how easy it is to iden-
tify private information from smart meters. We use simple
and well-known techniques to identify complex patterns of
household activity. Note that utilities with access to thou-
sands of homes will have even more data to leverage to build
models to identify particular user behaviors. Further, utilities
that have access to detailed power signatures for particular
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Figure 7. An example of the same power segments from
Figure 6, but at a 30 second logging granularity.

brands and models of household appliances will be able to
significantly increase the detail and accuracy of our analysis.
3 Towards a Privacy-Enhancing Architecture

From the perspective of electric utilities, smart meters
should meet the following goals: (i) enable critical peak
billing and support dynamic pricing, (ii) support tamper and
energy theft alarms, (iii) support power failure and restora-
tion notifications, and (iv) support demand response for
home automation. 1 In addition to these goals, we add the
goal of safeguarding the privacy of the consumer. More pre-
cisely, the goals of the utility should be met while avoiding
unnecessary information leakage, or, more explicitly, with-
out revealing when and how energy is being used by a partic-
ular household. In this section, we outline a new smart me-
ter architecture that reconciles the security goals required by
electricity providers and the privacy goals of the consumer.
3.1 Adversarial Model

Our privacy-enhancing smart meter architecture consists
of three components (see Figure 8):
Household Smart Meters gather fine-grained power read-
ings (tuples) that consist of a pseudo-random tuple id or
tag, a timestamp, and the corresponding power usage in kW,
and relay blinded readings to neighborhood gateways. Our
model assumes that consumers have an incentive to tamper
with electricity meters to avoid paying bills.
Neighborhood Gateways are computer appliances placed
between the smart meters and the remote utility servers. In
our architecture, power readings are relayed to utility com-
panies by these gateways, without disclosing which home
reported which power tuple, thus concealing their origin.
These blinded power tuples consist of a timestamp and the
corresponding power usage in kW. This information allows
utility companies to meet their goals while protecting the pri-
vacy of individual households. Neighborhood gateways may
also act as control and storage points in a micro-grid. Com-
munication with both the smart meters and the utility servers
is assumed to be over a secure channel that provides authen-
ticity, confidentiality and integrity. For simplicity, in this

1Another potential application includes intrusion detection.
During our data collection, one of the authors experienced a car
break-in at his apartment. Power traces show precisely when the
lights of his carport, activated by a motion sensor, were turned on.



Smart
Meter 

1

Smart
Meter 

2

Smart
Meter 
n-1

Smart
Meter 

n

Neigborhood 
Gateway Utility

Server
...

Registration 
and 

Reconciliation

Power tuple 
gathering

Secure Communication

Figure 8. Privacy-enhanced smart metering using neigh-
borhood gateways.

model neighborhood gateways are assumed trusted. This,
however, does not need to be the case. For example, it would
be possible to use mixnets or other ways to communicate
power tuples from the smart meters to the gateways, see for
example [6] .
Remote Utility Servers collect the blinded power tuples
from the neighborhood gateways corresponding to all the
smart meters in the neighborhood, allowing them to meet
their demand response goals. In order to negotiate billing,
these servers periodically communicate directly with each
smart meter via a Zero-Knowledge protocol, which will be
described below. We assume that the utility company’s
server is an honest but curious adversary. That is, the server
may attempt to obtain private information about the con-
sumer, but it will follow the protocol correctly and will not
provide false information.

3.2 Using Zero-Knowledge Protocols
While fine-grained measurements are necessary to sup-

port variable pricing and demand response, we showed in
the previous section that a fine-grained power trace is vulner-
able to the inferring of private information via powerful data
mining techniques. To address the issue, we draw upon Zero-
Knowledge protocols as a means to provide privacy to con-
sumers while continuing to employ fine-grained measure-
ments to meet smart metering goals. Zero-Knowledge (ZK)
protocols [10] are challenge-response protocols that allow
the prover to demonstrate the knowledge of a secret to the
verifier, without revealing any partial information that would
help the verifier infer the secret, other than the fact that the
prover knows the secret. These protocols typically rely on
interactive verifications in which the verifier presents a se-
ries of challenges to the prover that can easily be responded
to when the prover knows the secret, but are extremely dif-
ficult to respond to reliably without knowledge of the secret;
as the number of consecutive challenges increases, the prob-
ability of answering these challenges without knowing the
secret decreases exponentially.

3.3 Achieving Privacy and Security Goals
Privacy In our case, the smart meter is the prover, the utility
company’s server is the verifier and the power trace is the
secret. The protocol allows a smart meter to report its bill,
computed from fine-grained measurements, without reveal-
ing how or when electricity was used, while guaranteeing to
the provider that customers do not under-report their usage.

Since fine-grained measurements are never sent to the server,
privacy is enhanced.
Security ZK protocols are resilient to tampering. That is,
not only is it extremely difficult for the prover to falsely con-
vince the verifier that he knows the secret, but the prover
would also be unable to respond satisfactorily to the verifier’s
challenges using a secret that had been tampered with (in
this case, an inaccurate power trace). Additionally, a small
number of measurements will be made available to the utility
company, which will help ensure that the sensing capabilities
of the smart meter have not been compromised.

Further, as mentioned previously, it is important to em-
phasize that the protocol provides aggregate neighborhood-
level usage information to the utility company. Such aggre-
gate information is useful for predicting future demand in an
area and facilitates long-term capacity planning for electric-
ity generation.

3.4 A Zero-Knowledge Billing Protocol
The billing protocol that we propose consists of three

phases for each billing cycle: registration, tuple gathering,
and reconciliation. In practice, however, the registration of
tags for the next billing cycle and the reconciliation for the
current cycle can happen essentially simultaneously. As a
consequence, the direct communication between smart me-
ters and utility servers occurs only once per billing cycle.
On the other hand, blinded power tuples are constantly being
gathered and relayed by the neighborhood gateways.
1. Registration: In this phase of the protocol, smart me-
ters would cryptographically commit to a set of N pseudo-
random tags {ri}, and a set of keys {k1, ...,km}, where N is
the number of power tuples necessary to compute the elec-
tricity consumption for a billing period, and m is the number
of rounds in the protocol. A higher number of rounds pro-
vides more resilience against customer cheating, but in prac-
tice a small number, e.g. m = 10, provides adequate guar-
antees. The challenge-response protocol would rely on the
fact that the smart meter knows these parameters and that the
power tuples generated during consumption are associated to
these committed tags.
2. Tuple Gathering: Smart meters create tuples [ri, ti,ρi],
where ri is a pseudorandom tag from the set of committed
tags previously produced in the registration phase; ti denotes
the timestamp for the power tuple; and ρi denotes the power
usage reported by the smart meter in kW at time ti. The
neighborhood gateways do not reveal which random tuples
ri correspond to which smart meter.
3. Reconciliation: During reconciliation, the client com-
putes the bill using variable pricing as E = ∑

N
i=1 Cost(ti,ρi)

using the tuples [ri, ti,ρi], and submits E to the server. To
prove E is correctly computed, the client and server engage
in m verification rounds. The smart meter passes each veri-
fication round if the cost E was computed using tuples with
tags as well as the keys committed in the registration phase.

Additionally, the billing protocol will be aided by spo-
radic random spot checks that reveal the client identity at-
tached to an insignificant amount of tuples. This spot check-
ing is designed to prevent clients from manipulating tuples.
In our case, these random spot checks are implemented by



allowing the neighborhood gateways to unblind a negligi-
ble amount of tuples. Such limited unblinding is useful in
gathering limited data to design targeted incentives, e.g., for
demand response. This feature will complement the capa-
bility of utilities to obtain neighborhood-level aggregates for
computing seasonal usage in future demand estimation.

Typically Zero-Knowledge protocols are computationally
expensive. However, they have been successfully applied to
provide location privacy to vehicular services [22, 3]. While
our goals are different from providing location privacy, we
use similar insights to provide an efficient implementation
for smart meters. Our initial results show that, at minute-
level granularity, an entire day’s usage measurement can be
verified in less than 5 minutes. The same level of efficiency
can be achieved for the computation of other aggregate func-
tions that may be needed in smart meters, such as sample
means, sample variances, maxima, linear regressions, and
sample correlations [19], since our protocol uses homomor-
phic encryption, which ensures that the sum of two cipher-
texts decrypts to the sum of their corresponding plaintexts.
This property enables computation on encrypted data.

4 Final Thoughts
Prior work exists on distilling information about appli-

ance usage from power traces. However, prior approaches
assume knowledge of the appliances in a home or take ap-
pliance measurements in order to use supervised learning
techniques to disambiguate events. For example, Patel et
al. [21] use individual traces from USB oscilloscopes to
disambiguate power traces of particular appliances. Jiang
et al. [13] solve a similar problem by using a wireless sensor
network to monitor building energy usage. Similarly, Lam et
al. [16] classify appliances based on fine-grained load signa-
tures. More accurate monitoring for utilities has many bene-
fits, as prior work discusses, e.g., [18], [5], [14] but they do
not propose techniques to preserve privacy. An alternative
approach to protect privacy is adding noise to load signatures
using rechargeable batteries [8].

In this paper, we highlight the issue of privacy and smart
meters. To illustrate the privacy leaks smart meters allow,
we develop a simple approach to label usage patterns using
off-the-shelf statistical techniques. We then sketch the de-
sign of a privacy-enhancing architecture that enables utilities
to satisfy their net metering goals. As part of ongoing re-
search, we are implementing our protocol into a prototype
smart meter using a TED energy monitor [1] and an embed-
ded ARM-based Linux board that runs our ZK protocol. We
are generalizing the billing protocol to include the compu-
tation of other useful information that allows utilities to im-
prove their planning capabilities. Finally, we are formalizing
our leakage model to ensure that reporting aggregate infor-
mation provides adequate privacy guarantees.
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